眼球

三相并网逆变器的基础分析

发布日期:2021-12-06 10:18   来源:未知   阅读:

  ,V为桥臂中点电压,等效阻抗压降UR=iR,等效电感压降UL=jwLi,(电压超前

  也就是说这种拓扑的逆变器可能工作在四象限,可整流可逆变可变功率因数,故常成为“变流器”。

  (A)、式子可以看出V与i是相互影响的,确定了i就确定了v,确定了v就确定了i.

  (C)、直接受我们控制的是6个开关管的通断,当6个开关管的通断状态确定时,V处的电压也跟着确定。

  下面将这三步分开分析,不一定按照这个次序来,先分析简单的。中途需要涉及到其他知识的,也提前先列出来。

  换个写法,用矩阵来表示,计算的时候好计算。用p表示微分算子,则上面的式子可以表述为:

  在三相系统中,常见的有三种坐标系:三相静止坐标系(abc)、二相静止坐标系(alpha-beta)、二相旋转坐标系。

  平常见的ABC分布在平面上,互差120°就是三相静止坐标系。因为这个是二维平面,用二个不用向的矢量就可以表述整个平面上的向量,因此用平面上二个垂直的坐标系就可以表示三相坐标系中的量,即为二相静止坐标系。在三相或二相静止坐标系中,各个量(电压电流。。。)都是余弦函数,是个变化的数值。这二种坐标系的的特点是坐标轴都是固定的,数值是变化的。计算起来也麻烦。

  如果我们将坐标轴按照电压或电流的频率来旋转,在轴上通一幅值为电压或电流最大值的直流量时,就发现这个直流量在静止坐标系上的投影就是电压或电流在静止坐标系下的值。就是说这二种方法要表达的结果是一样的,只不过是表达的方式不一样罢了。这种坐标系(二相旋转坐标系)的特点是坐标轴旋转,数值是直流量。

  1、静止坐标系下得量是一个变化的数值,用PI调节(现在用的最多的方法)时要跟踪的是一个变化量,这样必然会有误差!(静态误差或叫静差,这从理论上就无法消除)

  2、二相旋转坐标系的坐标轴是二个垂直的量,选择好参考角度,就可以用一个轴表示有功一个轴表示无功,这样很容易控制变流器的功率因数,而这个参数在并网时是有严格要求的。

  三相变流器常用的的调制方式有二种方式:SPWM和SVPWM,SPWM是通过查正弦表实现,SVPWM是通过矢量变换得到,其中SVPWM具有更高的电压利用率。这里着重讲述一下SVPWM调制方式。

  以看出 U的轨迹为一个幅值等于相电压峰值,角频率等于正弦电压角频率按逆时针方向匀速旋转的圆。也就是三相正弦电压每一个时刻在三相坐标轴上的合成矢量对应着矢量圆上的一个点。而矢量圆上的每一个点都对应着三相正弦电压一个周期内的一个角度。(下面用这个观点)

  下面再回头看看三相半桥。不考虑死区时各个桥臂的开关状态总是互补的。不会同时通也不会同时断(断了相当于这一桥臂没起作用,死区时间很短,暂不考虑)。

  我们把上桥臂导通下桥臂关断定义为1,下桥臂导通上桥臂关断定义为0.则三相桥臂一共有2的三次方=8种状态。

  在ABC=100时(表示A的开关状态为上通下断,BC的状态都为下通上断。下面的用法类同)。

  既然确定有几个基本矢量可以合成想要的矢量。那么接下来的工作就是确定用那几个基本矢量(就是采用哪一组导通状态),计算出每个矢量应该作用的时间(就是确定每一组导通状态所维持的时间)。

  由于PWM信号的生成是通过定时器的实际值与比较值CMPR比较所得,因此最后要做的就是将每一组导通状态的维持时间变成定时器中的比较值CMPR写入寄存器中。